If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2=3
We move all terms to the left:
2c^2-(3)=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $
| 5y-7=3y+11 | | 8xY=104 | | 2000-0.15x=3300-0.15x | | 2000+0.15x=3300+0.15x | | 20(5+10x/2)-10x=5 | | 5x=-64 | | x/12=-1.5 | | 7/16=x4 | | 4n+nn=-3 | | 36=18x12x+6 | | 41-2a=2+a | | 5q=31=13 | | -8=(z-16)/8 | | 84+87+103+x+150+128=720 | | y+33=–2 | | 84+87+103+x+150+128=360 | | y+3/3=–2 | | 26=q/5+21 | | 6+x=13.9 | | 12=k(-4) | | 3d+2=8.75 | | 3/5xx60=24 | | −5/w+4=9 | | −5w +4=9 | | 93=5-20p-8)-4p | | x9-17=100 | | x=12-1.5x | | 3+p=18.75 | | 50(5x)+15)=300 | | 3^12+3x=(1/729) | | 2^(x+8)=21 | | 70+60+65+40+x=360 |